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Abstract. The two-dimensional Yukawa pair potential represents a simple model for 
the inleraclion of charge-stabilized colloidal panicles confined between two charged 
plates. Static and dynamical correlations in the liquid stale of this model are calculated 
using Brownian dynamin simulations. I n  particular, the pair, triplet and orientational 
slruclure are discussed as well as dynamical quantilies like panicle diffusion and the 
time-dependence of lhe nearest-neighbour orientational eorrelalion. It is found that 
the decay of nearest-neighbour orientation is non-expnential in time. Its relaxation 
occun on a time scale lhal is much larger than a time typical for the crossover of the 
translational diffusion to the hydrodynamic regime. 

1. Introduction 

The investigation of the structure and dynamics of colloidal suspensions has become 
a field of intense research and increasing interest during the last decades. Both 
scattering experiments and theories involving models from statistical mechanics were 
used to explore static and dynamical phenomena, (see references (1-31 for recent 
reviews). It turned out that the experimental data could often be understood in 
terms of relatively simple models with a painvise potential a hard-sphere potential 
for sterically stabilized and the so-called Derjaguin-Landau-Veney-Overbeek (DLvo) 
[4] potential for charge-stabilized colloidal suspensions. The electrostatic part of the 
latter is simply of Yukawa form with the Debye-HUckel screening length. Thus there 
are now well-characterized experimental systems on a mesoscopic length scale for 
simple theoretical models with a painvise potential. 

Recently, it has also become possible to prepare two-dimensional colloidal systems, 
i.e. colloidal particles moving in thin water films on a substrate or between two parallel 
glass plates. By optical microscopy and digital image processing [S-101 one can directly 
visualize typical configurations and particle trajectories and thus gain direct insight 
into the real-space structure and dynamics of the two-dimensional system. As regards 
charge-stabilized colloidal particles (macroions), they are usually confined between 
highly charged plates and are thus well restricted to the two dimensions parallel to 
the plates. On the other hand, sterically stabilized colloidal particles can also move 
perpendicular to the confining plates and this additional dimension can be controlled 
by the distance between the plates. As in the three-dimensional case a hard-sphere 
or a owo-type potential, respectively, is an appropriate description of the particle 
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10106 H Lowen 

interactions. In the case of highly charged plates, the van der Waals interaction 
is negligible compared to the strong electrostatic repulsion and a simple Yukawa 
potential describes the dominant interaction (see Chang and Hone [ll]). 

The dynamics of a colloidal suspension is Brownian rather than Newtonian due 
to solvent friction. If the Suspension is dilute enough, hydrodynamic interactions 
can safely be ignored and simple Brownian motion of interacting particles is an 
appropriate picture for the dynamics. Whereas both the Yukawa [12,13] and the 
hard-sphere model [14] with simple Brownian motion have been studied extensively 
by Brownian dynamics (BD) simulations in three dimensions, little attention has 
been paid until now to their two-dimensional or quasi-two-dimensional reductions. 
Recently, Schaertl and Sillescu [lo] studied particle self-diffusion in the quasi-two- 
dimensional hard-sphere model by a BD simulation and found agreement with their 
own experimental data. But the two-dimensional Yukawa fluid has not yet been 
studied systematically. 

In this paper, an extensive BD simulation for the two-dimensional Yukawa fluid 
is presented. There are  several reasons that have motivated this study. First, the 
‘exact’ simulation data provide a severe test for theories regarding the structure and 
dynamics of Yukawa liquids [15,16]. Second, one could try to fit the experimental 
data (e.g. the two-dimensional pair correlation function g( r)) with an effective charge 
of a Yukawa potential, to predict then different structural and dynamical quantities by 
the simulations and to compare again with the experiment Third, a two-dimensional 
liquid which undergoes Brownian dynamics is interesting in itself. The peculiarity 
of a two-dimensional system is that the nearest-neighbour orientational correlation 
is simply defined and plays a key role in characterizing twodimensional melting 
(for a review, see [17]). One interesting question concerns the time-scale on which 
this orientation decays in comparison with the time where the translational diffusion 
reaches the hydrodynamic regime, i.e. the regime where particle motion can be 
characterized by the long-time self-diffusion coefficient D,. It is found that the 
relaxation of orientation in a strongly interacting liquid is considerably slower than 
the relaxation to long-time diffusion. 

The paper is organized as  follows: in section 2, the model and the Brownian 
dynamics simulation method are introduced and briefly explained. Then, results for 
the pair, triplet and orientational structure are given in section 3. In particular, 
the results for the triplet correlations are compared with Kirkwood’s superposition 
principle for the three-particle distribution function. Furthermore, dynamical 
correlations are discussed in section 4. The paper concludes with a summary and 
an outlook. 

2. The model and simulational method 

We consider a Charged colloidal suspension between two highly charged parallel plates 
and we assume an effective two-dimensional Yukawa potential between the macroions. 
Usually it is written as 

V ( r )  = ( . T 2 e 2 / w )  exp(-nr) (1) 

where Z ’ e  is an effective charge, e is the  dielectric constant of the solvent and K is 
the inverse screening length. Chang and Hone [ll] have shown that the screening 
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length is dominated by the counterions of the charged plates if their surface charge is 
high, i.e. for a charge density U of about U 2 10"e cm-*. Under these circumstances 
K is simply given by 

K = = / d i d  (2) 

where d is the distance between the plates. For a two-dimensional colloidal 
suspension, the relation of the effective charge Z*e to microscopic quantities is not 
known exactly at the moment. This is in contrast to  the usual threedimensional case 
where the DLvo-model or the Poisson-Boltzmann-cell model (see [18,2]) give explicit 
expressions for 2'. However, as is often done in the threedimensional case, one can 
treat Z' as a free parameter to fit certain experimental data. vpical values of Z' 
are between 100 and 1OooO. 

In writing down the two-dimensional Yukawa model (I), we have made several 
approximations. First, the plates must be highly charged in order to justify the 
confinement of particle motion to two dimensions and also to guarantee the 
expression (2) for K. Next, we have neglected image-charge effects on the plates 
which would make the interaction more repulsive, but for large d/p-'IZ, where 
p = N/A is the area density of the colloidal particles, the corrections are negligible, 
see [19]. Of course one could also study the full effective potential where all image 
charges are taken into account, as given explicitly by Chang and Hone 1191, but this 
would spoil the simplicity of our simple Yukawa model somewhat. Another inherent 
assumption is the pair potential picture. Recent work for three-dimensional colloids 
1201 indicates that effective counterion-induced many-body forces become relevant for 
concentrated charged colloids. However, for relatively small densities, a pair potential 
picture (at least with one adjustable parameter Z * )  should be sufficient. 

Let us now describe briefly the Brownian-dynamics simulation method which is 
fairly standard [21,13]. The irreversible coupled equations of motion for the N 
colloidal particle positions ( ~ , ( t ) , i  = l , , , . ,  N ]  read 

€i;(f) = F ; ( t )  + R ( t )  (3) 

where 

is the effective total interparticle force and R( t )  is the Langevin random force of the 
solvent is the friction coefficient and sets the time scale rB for the  macroions. It 
is also related to the short-time diffusion coefficient D, via D, = k B T / (  where T 
is the temperature (usually room temperature). In the following, we have chosen the 
time scale rB arbitrarily to be 

TB = exp( K /&) /( p312 Z*'aB EH) (5)  

where aB =, 0.53A is the Bohr radius and EH = 27eV is the Hartree energy. 
Finite difference integration of equation (3) leads to 

ri(t + A t )  = ~ ~ ( 1 )  + ( 1 / C ) F , ( t ) A t  + (AT), + O((At)') (6)  
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Table 1. Paramelem of dillerent NnS. Ihe dielectric constant L = 78, the temperature 
T = 3WK. the effective macroion charge Z' = 470 and the screening parameter 
K = 2.34 x 106m are fixed. Given are lhe density p in ,"z, lhe equation of state 
Z = P l p k ~ T ,  lhe reduced long-time diffusion constant D* = D,/Do and the value 
gmu of g (r )  at the f i l s 1  maximum. All Nns are in the liquid sule acept  N" G which 
corresponds to a triangular crystal. 

Run p Z D' 9" 

A 0.25s 7.6 0.33 1.70 
B 0.51 26.1 0.171 2.45 

D 0.61 35.9 0.14 2.67 
E 0.77 52.4 0.072 3.0 
F 0.92 70.5 0.05 3.4 

C 0.56 30.9 0.16 2.57 

G 1.38 - 0.00 4.3 

where the random displacement (Ar), is sampled from a Gaussian distribution of 
zero mean and variance (Ar): = 4D,At. The typical order of At was 0.0015s,. 
We have done a series of runs for different densities p = N / A ,  hut k e d  potential 
parameters. The data of the different runs are explicitly given in table 1. N = 440 or 
N = 1764 particles were equilibrated in a square with periodic boundaly conditions 
and then statistics were gathered for typically 50000 timesteps. All results were the 
same for N = 440 and N = 1764. 

As a final remark, hydrodynamic interactions are ignored by assuming the simple 
Brownian-dynamics algorithm (6). In order to get an estimation of the relevance of 
hydrodynamic interactions, one can consider the ratio of the short-time diffusion 
coefficient D, to the first off-diagonal correction term of the e.g. Rotne-Prager 
diffusion matrix [I] for a particle of radius R at mean separation fi. This ratio 
is of the order of R I G ;  in a dilute though strongly interacting suspension of highly 
charged particles it is less than one percent Furthermore, hydrodynamic interactions 
between the plates and the particles are of the order of R / d  and are therefore only 
negligible if the particles are far enough from the plates. Normally, d is of the same 
order of magnitude as the interparticle spacing; thus hydrodynamic interactions can 
be ignored for a dilute suspension. 

~ 

3. Results for the structures 

In table 1, the parameters for the different runs are listed. We take k e d  parameters 
for the Yukawa potential (in fact, the same parameters as in [ll], typical for a two- 
dimensional colloidal suspension) and we vary the area density p. The temperature 
T = 300K is fixed, too. Seven different runs corresponding to different area density 
p were done. 

3.1. Pair structure 

The two-dimensional pair correlation function g( T )  is defined as usual by 

) g ( T ) = - ( -  1 1  6(T--;+r1)  N 

p i , j= l ; i# j  
(7) 
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where (...) is a canonical average. Results for this quantity are given in figure 1 for 
runs A, B, E and G. With increasing density, the structure becomes more pronounced, 
but the finite-size state remains liquid-like up to p E 1.0 pm-, and then freezes into 
a triangular crystal. For comparison, a typical spherically averaged pair-correlation 
function in the crystalline state is also shown in figure 1, exhibiting a split second 
peak due to the nearest-neighbour shells of the triangular lattice. 

. ~.. --. ... . . -. - 
, ,.., 

Flgure 1. Pairamelation function g( P) versus reduced distance 
r/p-'" for run A (dashed line), run B (dotdashed line) and run 
E (solid line). For comparison. the spherically averaged g(r) for 
the triangular cryslal of run G IS also given (dotted line). 

, _  

, 

jd 
r / p  

We have also checked the number of nearest and next-nearest neighbours, N, 
and N,,, respectively. They are obtained by integrating g(r)  as 

and 

where R,, R, are the positions of the first and second minimum of g ( r ) .  N, is 
always very close to  6, whereas N,, is close to  12 in the liquid phase. This indicates 
that the short-range order in the liquid resembles that of '1 triangular crystal. 

From the virial expression, one can also compute the pressure P, or t h e  equation 
of state Z, of the two-dimensional system as 

Results for Z are given in table 1. Obviously, Z increases with density. A detailed 
knowledge of Z allows the calculation of thermodynamic quantities and is also needed 
as an input for density-functional calculations of inhomogeneous situations. 

One point that makes a two-dimensional colloidal liquid very attractive from an 
experimental point of view is that g ( r )  is directly accessible by evaluating typical 
configurations in real space obtained by digital image processing. This is very 
much different from the case of three-dimensional atomic or colloidal liquids where 
scattering techniques yield only direct information on the structure in Fourier space 
and a measurement of g( r )  suffers from cut-off errors in a Fourier transformation to 
real space. Thus real-space correlations can in principle be directly compared to the 
experimental results. 



10110 H Lowen 

3.2. niplet structure 

Whereas the pair-correlation function measures two-particle correlations, we are now 
considering three-body correlations. These are much more sensitive to details of the 
interparticle forces than the pair structure and therefore a comparison of experimental 
data with our simulational results can reasonably test the validity of the Yukawa 
model. A convenient quantity to characterize triplet correlations is the distribution 
function of the bond angle 0 of particle triplets which have one interparticle distance 
smaller than r, and another interparticle distance smaller than r,. 0 is then the 
angle between these two interparticle distances. The distribution function of 0 is 
called g3(0, r l , r z )  and it is conveniently normalized such that its 0-integral equals 
unity. g3(0, 0, RI)  measures bond angle distributions in the nearest-neighbour shell, 
whereas g3( 0, RI ,  RZ) gives this distribution of the origin particle with its next- 
nearest-neighbour shell. Here, R,, R, denote the position of the first and second 
minimum of g( r ) .  

g3 (0 ,0 ,R l )  is shown in figure 2(a). It exhibits pronounced maxima at 0 % 

60°, 120°, 180', indicating a latent triangular structure already in the liquid that 
increases with increasing density. g3(0, R,, R,), on the other hand, has peaks at 
multiples of 30° and is shown in figure 2(b). 

bond angle 3@/n bond angle 3 B / a  

Figure 2. (a) Bond-angle distribution function g3(8 ,0 ,  R I ) .  R I  being the position of 
the first minimum of g ( r ) .  vemus band angle 8. 8 is given in units of rrf3 = h0O. The 
units of gtf8.O.Rn) are such that its 8-integral is normalized: ,[:d8g3(8,0, RI) = 1. 
Results are given for runs A, B and E the line types are as in figure 1. (b) Same as (a) 
but now for g3(8, R I ,  Rz) where Rz is the position of the second minimum of g(r) .  

A familiar approximation of triplet correlations is Kirkwood's superposition (221. 
It consists in approximating the three-particle distribution function g3(vlr v Z , v 3 )  [23] 
by the factorization 

9 3 ( r l ~ f Z ~ r 3 ) = g ( ~ T 1 - r Z ~ ) 9 ( ~ v I - T 3  l)9(lrZ-v31)' (11) 

Originally, this was proposed for three-dimensional liquids. A comparison of 
Kirkwood's principle with simulational data has not been done until now for ZD 
liquids, although it is interesting both from a theoretical and calculational point of 
view. In this approximation, one obtains 
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In figure 3, the results for run E are compared with Kirkwood's superposition. The 
Structure of the low-angle peaks (0 5 ~ / 2 )  is reproduced satisfactorily, whereas 
Kirkwood's superposition fails to predict the structure for high angles B 2 n/2. In 
other words, Kirkwood's superposition principle only works for small-distance triplet 
correlations. 

0.0  J 1 

bond angle 3B/n 

Figure 3. The results of run E (solid lines) 
for both gj(O,O, RI) (i.e. TI = 0. rz = 
R I )  and g,(O, RI, R2) (i.e. q = RI, r2 = 
R2) are compared with Kirkmd's  superpmilion 
approximation for Iriplel correlations (dotted lines). 

bond angle 38/n 

Figure 4. Same as figure 3, but now for a three- 
dimensional Yukawa liquid. The potential and the 
temperature are as in figure 3, whereas the three- 
dimensional density is  p3/lL, where p is the WO- 
dimensional density from figure 3. 

Let us also discuss the accuracy of Kirkwood's superposition principle in three 
dimensions [24]. The bond-angle distribution can readily be defined in three 
dimensions and Kirkwood's approximations reads 

sin 0 Jvy d r  JTT dr' r2r'2g( r)g( r')g( drz + T ' ~  - 2rT' cos 0) 
dOsineJFT drJ?: d+r2r'zg(r)g(P')g(Jrz + 9 2  - 2rr'cose) g3(e,r,,rz) = 

(13) 
where g ( r )  is now the three-dimensional pair-correlation function. In figure 4, 
we compare the data of a three-dimensional Yukawa simulation (solid line) with 
Kirkwood's superpasition (dotted line). In order to get a comparable structure, the 
same potential and the same temperature as in figure 3 were used and the three- 
dimensional density was chosen to be p31z where p is the area density of figure 3. As 
can be clearly seen in figure 4, Kirkwood's approximation describes threedimensional 
triplet correlations within the first shell of nearest neighbours reasonably even for 
higher bond angles. This results from the additional azimuthal average over particle 
triplets. As in ZD, Kirkwood's approximation gives deviations for larger bond angles 
in the  next-nearest-neighbour shell. However, the failure in two dimensions is more 
dramatic since there is a considerable mismatch in the oscillations of the bond-angle 
distribution. Therefore, for high bond angles, Kirkwood's superposition principle 
works better in three than in two spatial dimensions. 

In contrast to the three-dimensional case, where only indirect experimental 
information on triplet correlations is known, the bond-angle distribution function 
g,( 0, r,, r2) is directly accessible in experiments on two-dimensional liquids, as the 
particle-configurations are available. Until now, experimental attention was mainly 
focused on functions like g( r) and ga( r) which are discussed later. It would, however, 
also be an interesting experimental task to verify the strong oscillations in the bond- 
angle distribution and to compare them with the present simulational data. 
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3.3. Nearest-neighbour orientational correlations 

Nearest-neighbour orientational correlations in a two-dimensional fluid are conve- 
niently measured by the orientational correlation function g 6 ( r )  which is an order 
parameter for a sixfold symmetry: 

N 
6(r - r i  + r j ) V i V ;  

Here, 

6 1 
6 V j  = - exp(i6Bj,) 

m=I 

where the sum goes over the six nearest neighbours of particle j and B j ,  is the 
angle between the bond joining the j t h  and the mth particle and some k e d  axis. 
In the liquid phase, g 6 ( P )  decays exponentially whereas in a possible hexatic phase 
g6( T )  has an algebraic decay. A plot of g6( P )  for run E is given in figure 5. As the 
pair-correlation function g( P), it oscillates and then decays to zero. It even has small 
negative values for positions corresponding to the first minimum of g ( r ) .  A plot of 
In(gn(r)) versus P falls reasonably well on a straight line for large P so that run E 
represents a liquid. Therefore the runs A, B, C and D which have lower densities 
than run E are also liquid and not hexatic. 

Flgure 5. Orientational correlation funclion gS(.) as defined in the lex1 versus reduced 
dislance r/p-'12 for run E. 
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Flgure 6. w i c a l  configurations of 440 particles in 
a square with periodic boundary conditions; (a) for 
run A, (b )  for lhe dense liquid of run E. Here an 
increase of neighbouring orientation can clearly be 
seen. 

3.4. Typical configurafions 

Plgure I .  lnvcme of the reduced timedependent 
diffusion conslants D o / ( D ( f )  - D,) versus 
reduced time it-  for runs B (dotdashed line) 
and E (solid line). 

In figure 6, we show typical configurations of the two-dimensional Yukawa fluid for 
runs A and E. What can be seen directly is the fact that the orientational as well 
as the positional order increases as the density increases. Whereas there are voids 
in run A, the configuration of run E exhibits a marked orientational correlation over 
several interparticle spacings. Again, similar two-dimensional configurations can be 
obtained experimentally, see e.g. [S, 91. 

4. Brownian dynamics and time-dependent correlations 

The first interesting quantity, characterizing particle self-diffusion, is the time- 
dependent diffusion constant D ( t ) ,  defined as 

D ( t )  = (1/4t) W ( t )  (16) 

where 

is the mean-square particle displacement. Alternatively, one can also define a time- 
dependent diffusion constant by the differential expression 

- 
D ( t )  = (1/4)(d/dt)W(t) .  (18) 

Clearly, for t = 0, the short-time diffusion coefficient induced by the solvent is 
obtained 

D ( t = O ) = D ( t = O ) = D , .  (19) 

For long times, the two expressions also yield the same value, namely the long-time 
self-diffusion coefficient D,: 

lim D(2)  = lim n(t) = D,. 
I-, I-., 
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Data for D, are given in table 1. Remarkably, D,  is finite for Brownian dynamics 
in two dimensions whereas it is infinite for two-dimensional molecular dynamics [25]. 
Furthermore, a theoretical analysis [26] shows that 

- 
D ( t )  - D ,  = O(l/t)  D ( t )  - D, = O(l / t )  (21) 

so there is a 1/f longtime tail in both D ( f )  and act). We have tried to fit the 
simulational data for D ( f )  and D(t )  using different analytical expressions in order 
to extract a tymical relaxation time needed to cross over to the hydrodynamic regime 
where D ( f ) ,  D ( t )  5 D,. A good fit was obtained by using the algebraic expression 

D ( t )  = D ,  + A / ( t +  f R ) .  (22) 

In figure 7, it is shown that a plot of D J ( D ( t )  - D,) versus 1 does indeed fall 
reasonably well on a straight line. The expression (22) also reproduces the correct 
long-time tail (21). Values for the fit parameters A and tR  are summarized in table 2. 
We add as a remark that fit-functions for D(t)  always yield typical relaxation times 
that are a bit smaller than tR  so that 2 ,  is an upper bound on a typical relaxation 
time for the crossover of particle self-diffusion to the hydrodynamic regime. 

Table 2. Paramelen of the algebraic 61 A / ( t  + TO)  for Ihe translational diffusion 
( D ( 1 )  - D m ) / D o  and parameters of the stretched expnenlial fil A e x p ( - m )  for 
the nearesl-neighbour orientational aulocorrelalion function p ( f ) / p ( O ) .  

Run Fitted function A m 

B ( D ( t )  - D,) /Do  0.06 0.22 
B P ( t ) l P ( O )  0.07 1.1 
E ( D d )  - D,1/Dn 0.13 0.29 

An interesting question concerns the time-dependence of the nearest-neighbour 
orientational correlation. We define the autocorrelation function of particle 
orientation as 

where 
6 

(24) 
1 
6 Q j ( t )  = - exp(i60jm(t)) 

m=l 

and the notation is as in (15). p ( 1 )  measures the decay of a given orientation of a 
particle with respect to its six nearest neighbours. The logarithm of the normalized 
quantity p ( t ) / p ( O )  is plotted in figure 8 versus fi for runs B and E. The resulting 
curves fall very well on a straight line showing that a stretched exponential fit with 
exponent 5 is adequate at least for intermediate times t 
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Definitively, the decay of p ( t )  is not a simple exponential in time as reflected by the 
low stretching exponent f. However, we emphasize that (25) is only one possible 
intermediate-time fit which may fail for very large times where algebraic tails could 
become relevant. Unfortunately no exact statements about such long-time tails are 
known at present for p ( t ) .  Results for the fit parameters A and T~ are given in 
table 2. From these data, it becomes clear that the inherent time T~ for the relaxation 
of the orientational correlation is much larger than the relaxation time T~ of the 
translational diffusion describing the crossover to the hydrodynamic regime. This fact 
is expected for a hexatic phase, but less evident for a liquid phase. It shows that even 
in the liquid the orientation is a much more persistent quantity than translational 
correlations. Finally, the ratio T ~ / T ~  is increasing for increasing density. 

- 5 .**I . - * * . \ \  . ~ ._. F i y r e  8. Logarithm of the nearest-neighbour orientational 
correlation p ( t ) / p ( O )  as defined in the text versus square root 
of the reduced time tire lor runs B and E. The line types are as 

-in figure 7. 

-z 3 

(V ig  

5. Summary and outlook 

In this paper, the two-dimensional Yukawa liquid was simulated using Brownian- 
dynamics simulations. Results for the structure and dynamics were obtained that 
could be conipared with experimenki on charged colloids confined between highly 
charged parallel plates and that provide also a test for possible theories of liquid 
structure and dynamics in two spatial dimensions. I hope that the paper has an 
impact in two directions. First, in experiments, a more detailed analysis with the 
configuration data could give detailed results for the bond-angle distribution which 
can then, in turn, he compared with the simulations, and an analysis of different time- 
dependent configurations should confirm the  slower relaxation of nearest-neighbour 
orientations than that of self-diffusion in strongly interacting liquids. Second, the data 
for the longtime self-diffusion can be compared with recent theoretical expressions 
from kinetic theory for continuous potentials. One work has already been started in 
this direction and will he published elsewhere [27]. 

A remaining question concerns the location of the crystallization line towards 
a triangular crystal for a large but finite system. Another open direction is a 
systematic examination of a possible hexatic phase in the 2D Yukawa system. Also, 
as a more fundamental problem, the Yukawa pair-potential assumption (1) may be 
questioned. It is tempting to use a combination of density-functional theory and 
molecular dynamics that includes effective many-body forces between the macroions 
which are induced by the counterions and the charged plates. Our future work lies 
in this direction. 
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